Back Propagation Wavelet Neural Network Based Prediction of Drill Wear from Thrust Force

نویسندگان

  • Xu Yang
  • Hiroyuki Kumehara
  • Wei Zhang
چکیده

The fast monitoring of tool wears by using various Cutting signals and the prediction models developed rapidly in recent years. Comparatively, various wear forecast models based on artificial neural networks (ANN) perform much better in accuracy and speediness than the conventional prediction models. Combining the prominent dynamic properties of back propagation neural network (BPNN) with the enhanced ability of a wavelet neural network (WNN) in mapping nonlinear functions, a Back propagation wavelet neural network (BPWNN) is newly established to perform prominent prediction of drill wear. In this work, a multilayer BPWNN with wavelet algorithm has been applied to predict the average wear of a K10 carbide drill bit for drilling on a high silicon aluminum work piece. Mean value of the thrust force, cutting torque, and drilling depth, spindle speed and feed-rate are inputs to the network, and drill wear is the output. Drilling experiments have been carried out over a wide range of cutting conditions and the effects of drill wear, cutting conditions (spindle speed, drilling depth and feed-rate) on the thrust force and cutting torque have been investigated. Performance of BPWNN has proved to be satisfactory by experimental result. The accuracy of the prediction of drill wear using BPWNN is found to be better than using BPNN, and that BPWNN can learn the pattern faster compared to BPNN and could be used advantageously in online drill wear monitoring and prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring of drill flank wear using fuzzy back propagation neural network

The present work deals with developing a fuzzy back propagation neural network scheme for prediction of drill wear. Drill wear is an important issue in the manufacturing industries, which not only affects the surface roughness of the hole but also influences the drill life. Therefore, replacement of drill at an appropriate time is of significant importance. Flank wear in a drill which depends u...

متن کامل

Flank wear prediction in drilling using back propagation neural network and radial basis function network

In the present work, two different types of artificial neural network (ANN) architectures viz. back propagation neural network (BPNN) and radial basis function network (RBFN) have been used in an attempt to predict flank wear in drills. Flank wear in drill depends upon speed, feed rate, drill diameter and hence these parameters along with other derived parameters such as thrust force, torque an...

متن کامل

Cell Deformation Modeling Under External Force Using Artificial Neural Network

Embryogenesis, regeneration and cell differentiation in microbiological entities are influenced by mechanical forces. Therefore, development of mechanical properties of these materials is important. Neural network technique is a useful method which can be used to obtain cell deformation by the means of force-geometric deformation data or vice versa. Prior to insertion in the needle injection pr...

متن کامل

DRILL WEAR PREDICTION SYSTEM USING OF MOTOR CURRENT AND FUZZY LOGIC METHOD

In automation flexible manufacturing systems, tool wear detection during the cutting process is one of the most important considerations. This study presents an intelligent system for online tool condition monitoring in drilling process .In this paper, analytical and empirical models have been used to predict the thrust and cutting forces on the lip and chisel edges of a new drill. Also an empi...

متن کامل

In-process prediction of corner wear in drilling operations

The paper presents an in-process prediction of corner wear in drilling operations by means of a polynomial network. The polynomial network is composed of a number of functional nodes and well organized to form an optimal network architecture using an algorithm for synthesis of polynomial networks (ASPNs). Thrust force or torque in drilling operations has been correlated with corner wear in this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer and Information Science

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2009